557 research outputs found

    The concept of schizotypy — A computational anatomy perspective

    Get PDF
    AbstractDespite major progress in diagnostic accuracy and symptomatic treatment of mental disorders, there is an ongoing debate about their classification aiming to follow current advances in neurobiology. The main goal of this review is to provide a comprehensive summary of the put forward schizotypy concept that follows the needs for objective assessment of schizophrenia-like personality traits in the general population. We focus on major achievements in the field from the perspective of magnetic resonance imaging-based computational anatomy of the brain. Particular interest is devoted to overlapping brain structure findings in schizotypy and schizophrenia to promote a dimensional view on schizophrenia as extension of phenotype traits in the non-clinical general population

    Computational anatomy for studying use-dependant brain plasticity.

    Get PDF
    In this article we provide a comprehensive literature review on the in vivo assessment of use-dependant brain structure changes in humans using magnetic resonance imaging (MRI) and computational anatomy. We highlight the recent findings in this field that allow the uncovering of the basic principles behind brain plasticity in light of the existing theoretical models at various scales of observation. Given the current lack of in-depth understanding of the neurobiological basis of brain structure changes we emphasize the necessity of a paradigm shift in the investigation and interpretation of use-dependent brain plasticity. Novel quantitative MRI acquisition techniques provide access to brain tissue microstructural properties (e.g., myelin, iron, and water content) in-vivo, thereby allowing unprecedented specific insights into the mechanisms underlying brain plasticity. These quantitative MRI techniques require novel methods for image processing and analysis of longitudinal data allowing for straightforward interpretation and causality inferences

    Apolipoprotein E4 effects on topological brain network organization in mild cognitive impairment.

    Get PDF
    The Apolipoprotein E isoform E4 (ApoE4) is consistently associated with an elevated risk of developing late-onset Alzheimer's Disease (AD); however, less is known about the potential genetic modulation of the brain networks organization during prodromal stages like Mild Cognitive Impairment (MCI). To investigate this issue during this critical stage, we used a dataset with a cross-sectional sample of 253 MCI patients divided into ApoE4-positive (‛Carriers') and ApoE4-negative ('non-Carriers'). We estimated the cortical thickness (CT) from high-resolution T1-weighted structural magnetic images to calculate the correlation among anatomical regions across subjects and build the CT covariance networks (CT-Nets). The topological properties of CT-Nets were described through the graph theory approach. Specifically, our results showed a significant decrease in characteristic path length, clustering-index, local efficiency, global connectivity, modularity, and increased global efficiency for Carriers compared to non-Carriers. Overall, we found that ApoE4 in MCI shaped the topological organization of CT-Nets. Our results suggest that in the MCI stage, the ApoE4 disrupting the CT correlation between regions may be due to adaptive mechanisms to sustain the information transmission across distant brain regions to maintain the cognitive and behavioral abilities before the occurrence of the most severe symptoms

    Brain tissue properties differentiate between motor and limbic basal ganglia circuits

    Get PDF
    Despite advances in understanding basic organizational principles of the human basal ganglia, accurate in vivo assessment of their anatomical properties is essential to improve early diagnosis in disorders with corticosubcortical pathology and optimize target planning in deep brain stimulation. Main goal of this study was the detailed topological characterization of limbic, associative, and motor subdivisions of the subthalamic nucleus (STN) in relation to corresponding corticosubcortical circuits. To this aim, we used magnetic resonance imaging and investigated independently anatomical connectivity via white matter tracts next to brain tissue properties. On the basis of probabilistic diffusion tractography we identified STN subregions with predominantly motor, associative, and limbic connectivity. We then computed for each of the nonoverlapping STN subregions the covariance between local brain tissue properties and the rest of the brain using high-resolution maps of magnetization transfer (MT) saturation and longitudinal (R1) and transverse relaxation rate (R2*). The demonstrated spatial distribution pattern of covariance between brain tissue properties linked to myelin (R1 and MT) and iron (R2*) content clearly segregates between motor and limbic basal ganglia circuits. We interpret the demonstrated covariance pattern as evidence for shared tissue properties within a functional circuit, which is closely linked to its function. Our findings open new possibilities for investigation of changes in the established covariance pattern aiming at accurate diagnosis of basal ganglia disorders and prediction of treatment outcom

    Apolipoprotein E allele 4 effects on Single-Subject Gray Matter Networks in Mild Cognitive Impairment.

    Get PDF
    There is evidence that gray matter networks are disrupted in Mild Cognitive Impairment (MCI) and associated with cognitive impairment and faster disease progression. However, it remains unknown how these alterations are related to the presence of Apolipoprotein E isoform E4 (ApoE4), the most prominent genetic risk factor for late-onset Alzheimer's disease (AD). To investigate this topic at the individual level, we explore the impact of ApoE4 and the disease progression on the Single-Subject Gray Matter Networks (SSGMNets) using the graph theory approach. Our data sample comprised 200 MCI patients selected from the ADNI database, classified as non-Converters and Converters (will progress into AD). Each group included 50 ApoE4-positive ('Carriers', ApoE4 + ) and 50 ApoE4-negative ('non-Carriers', ApoE4-). The SSGMNets were estimated from structural MRIs at two-time points: baseline and conversion. We investigated whether altered network topological measures at baseline and their rate of change (RoC) between baseline and conversion time points were associated with ApoE4 and disease progression. We also explored the correlation of SSGMNets attributes with general cognition score (MMSE), memory (ADNI-MEM), and CSF-derived biomarkers of AD (Aβ42, T-tau, and P-tau). Our results showed that ApoE4 and the disease progression modulated the global topological network properties independently but not in their RoC. MCI converters showed a lower clustering index in several regions associated with neurodegeneration in AD. The SSGMNets' topological organization was revealed to be able to predict cognitive and memory measures. The findings presented here suggest that SSGMNets could indeed be used to identify MCI ApoE4 Carriers with a high risk for AD progression

    Investigating Neuroanatomical Features in Top Athletes at the Single Subject Level.

    Get PDF
    In sport events like Olympic Games or World Championships competitive athletes keep pushing the boundaries of human performance. Compared to team sports, high achievements in many athletic disciplines depend solely on the individual's performance. Contrasting previous research looking for expertise-related differences in brain anatomy at the group level, we aim to demonstrate changes in individual top athlete's brain, which would be averaged out in a group analysis. We compared structural magnetic resonance images (MRI) of three professional track-and-field athletes to age-, gender- and education-matched control subjects. To determine brain features specific to these top athletes, we tested for significant deviations in structural grey matter density between each of the three top athletes and a carefully matched control sample. While total brain volumes were comparable between athletes and controls, we show regional grey matter differences in striatum and thalamus. The demonstrated brain anatomy patterns remained stable and were detected after 2 years with Olympic Games in between. We also found differences in the fusiform gyrus in two top long jumpers. We interpret our findings in reward-related areas as correlates of top athletes' persistency to reach top-level skill performance over years

    Temporal and spatial dynamics of brain structure changes during extensive learning

    Get PDF
    The current view regarding human long-term memory as an active process of encoding and retrieval includes a highly specific learning-induced functional plasticity in a network of multiple memory systems. Voxel-based morphometry was used to detect possible structural brain changes associated with learning. Magnetic resonance images were obtained at three different time points while medical students learned for their medical examination. During the learning period, the gray matter increased significantly in the posterior and lateral parietal cortex bilaterally. These structural changes did not change significantly toward the third scan during the semester break 3 months after the exam. The posterior hippocampus showed a different pattern over time: the initial increase in gray matter during the learning period was even more pronounced toward the third time point. These results indicate that the acquisition of a great amount of highly abstract information may be related to a particular pattern of structural gray matter changes in particular brain areas

    Spatial resolution and imaging encoding fMRI settings for optimal cortical and subcortical motor somatotopy in the human brain

    Get PDF
    There is much controversy about the optimal trade-off between blood-oxygen-level-dependent (BOLD) sensitivity and spatial precision in experiments on brain’s topology properties using functional magnetic resonance imaging (fMRI). The sparse empirical evidence and regional specificity of these interactions pose a practical burden for the choice of imaging protocol parameters. Here, we test in a motor somatotopy experiment the impact of fMRI spatial resolution on differentiation between body part representations in cortex and subcortical structures. Motor somatotopy patterns were obtained in a block-design paradigm and visually cued movements of face, upper and lower limbs at 1.5, 2, and 3 mm spatial resolution. The degree of segregation of the body parts’ spatial representations was estimated using a pattern component model. In cortical areas, we observed the same level of segregation between somatotopy maps across all three resolutions. In subcortical areas the degree of effective similarity between spatial representations was significantly impacted by the image resolution. The 1.5 mm 3D EPI and 3 mm 2D EPI protocols led to higher segregation between motor representations compared to the 2 mm 3D EPI protocol. This finding could not be attributed to differential BOLD sensitivity or delineation of functional areas alone and suggests a crucial role of the image encoding scheme – i.e., 2D vs. 3D EPI. Our study contributes to the field by providing empirical evidence about the impact of acquisition protocols for the delineation of somatotopic areas in cortical and sub-cortical brain regions

    Remodeling of brain morphology in temporal lobe epilepsy.

    Get PDF
    Mesial temporal lobe epilepsy (TLE) is one of the most widespread neurological network disorders. Computational anatomy MRI studies demonstrate a robust pattern of cortical volume loss. Most statistical analyses provide information about localization of significant focal differences in a segregationist way. Multivariate Bayesian modeling provides a framework allowing inferences about inter-regional dependencies. We adopt this approach to answer following questions: Which structures within a pattern of dynamic epilepsy-associated brain anatomy reorganization best predict TLE pathology. Do these structures differ between TLE subtypes? We acquire clinical and MRI data from TLE patients with and without hippocampus sclerosis (n = 128) additional to healthy volunteers (n = 120). MRI data were analyzed in the computational anatomy framework of SPM12 using classical mass-univariate analysis followed by multivariate Bayesian modeling. After obtaining TLE-associated brain anatomy pattern, we estimate predictive power for disease and TLE subtypes using Bayesian model selection and comparison. We show that ipsilateral para-/hippocampal regions contribute most to disease-related differences between TLE and healthy controls independent of TLE laterality and subtype. Prefrontal cortical changes are more discriminative for left-sided TLE, whereas thalamus and temporal pole for right-sided TLE. The presence of hippocampus sclerosis was linked to stronger involvement of thalamus and temporal lobe regions; frontoparietal involvement was predominant in absence of sclerosis. Our topology inferences on brain anatomy demonstrate a differential contribution of structures within limbic and extralimbic circuits linked to main effects of TLE and hippocampal sclerosis. We interpret our results as evidence for TLE-related spatial modulation of anatomical networks
    corecore